- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Gu, Zhuangzhuang (4)
-
Sur, Sanjib (4)
-
Regmi, Hem (3)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 4, 2025
-
Gu, Zhuangzhuang; Regmi, Hem; Sur, Sanjib (, ACM Transactions on Internet of Things)Object detection plays a pivotal role in various fields, for example, a smart traffic system relies on the detected results for decision-making. However, existing studies predominately utilize optical camera and LiDAR, which exhibit limitations in adverse outdoor environments, such as foggy weather. To address these challenges, millimeter-waves (mmWaves) attract researchers’ attention to detect objects in severe conditions since they can work effectively in low-visibility conditions and overcome small obstacles. Yet, previous mmWave-based works have shown limited performance, such as no shape information for objects. Therefore, we design and implement a two-stage system,mmBox, to accurately predict bounding boxes with depth for vehicles and pedestrians, which first generates heatmaps in different dimensions and then leverages a deep learning model to extract features for predictions. To evaluate the performance ofmmBox, we collected real-world mmWave reflections from urban traffic intersections and dense-fog environments. The extensive evaluation metrics show remarkable accuracy and the low latency of our model.more » « lessFree, publicly-accessible full text available November 30, 2025
-
Gu, Zhuangzhuang; Regmi, Hem; Sur, Sanjib (, IEEE)
-
Gu, Zhuangzhuang; Sur, Sanjib (, ACM)
An official website of the United States government
